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IPCC: Consensus on Climate Change

2k Warming of the climate is “unequivocal”

2k Observed increase in global temperature is
likely due to human activities (greenhouse gas
emissions)

K Temperatures will continue to increase even if
changes to emissions are made

IPCC, 2007



3 Scenarios for Future Emissions

Business as Usual
Higher Emissions Scenario: A1F:

Stabilization at Higher Level
Lower Emissions Scenario: Bl

\ Stabilization + Restoration
Hansen: Coal Phaseout with CCS
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Increased lemperatures
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Increased Temperatures

4.0-5.0 °F
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Altered Precipitation Patterns

Rainfall Change
(inches)
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Altered Precipitation Patterns

+ 6” (1900 - 2000)

Rainfall Change
(inches)
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Rising Precipitation in Northeastern US

Projected for 2070-2099

Annual Winter Summer
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Precipitation Percent Anomaly in MD
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Thunderstorm + High Wind Events in MD
1980 - 2008

125 Events with Winds in Excess of 50 knots
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after NOAA Satellite and Information Service:
http://www4.ncdc.noaa.gov/cgi-win/wwecgi.dll?’wwevent~stormsatlas/ 13
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Thunderstorm + High Wind Events in PA
1980 - 2008

125 Events with Winds in Excess of 53 knots
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Climate Change Impacts
Eastern US: Projected Shifts in Forest Types

Projected Shifts in Forest Types

Recent Past Projected
1960-1990 2070-2100
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The maps show current and projected forest types. Major changes are projected for
many regions. For example, in the Northeast, under a mid-range warming scenario,
the currently dominant maple-beech-birch forest type is projected to be completely
displaced by other forest types in a warmer future.?®

Source: Global Climate Change Impacts in the U.S.
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Climate Change Impacts
Atlantic Sea Surface Temperature: Observed

Sea Surface Temperature
Atlantic Hurricane Main Development Region
August through October, 1900 to 2008
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Source: Global Climate Change Impacts in the U.S.



Chesapeake Bay Temperature

y Observed at Solomons, MD
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Chesapeake Bay Temperature

y Observed at Solomons, MD
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sea level rise
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Blackwater National Wildlife Refuge Area

Baseline: 3 mm rise/year
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Blackwater National Wildlife Refuge Area

Baseline: 3 mm rise/year
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Blackwater National Wildlife Refuge Area

Baseline: 3 mm rise/year
2020
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Blackwater National Wildlife Refuge Area

Baseline: 3 mm rise/year
2030
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Blackwater National Wildlife Refuge Area

Baseline: 3 mm rise/year
2040
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Blackwater National Wildlife Refuge Area

Baseline: 3 mm rise/year
2050
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Blackwater National Wildlife Refuge Area

Baseline: 3 mm rise/year
2100
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Blackwater National Wildlife Refuge Area

IPCC projection, average case scenario, 3 mm rise /year
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Blackwater National Wildlife Refuge Area

IPCC projection, average case scenario, 3 mm rise /year
2010
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Blackwater National Wildlife Refuge Area

IPCC projection, average case scenario, 3 mm rise /year
2020
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Blackwater National Wildlife Refuge Area

IPCC projection, average case scenario,4 mm rise /year
2030

" :‘;:. ’. B : '7 f-‘"' A
»-‘.f--\-'#f..; L f ) Y 24
e _v;__,.:{f_ 3 A ‘y 5 A,
5 Riey. ¥ f’il?(‘?b}ﬁ..‘f 20l

(A4

gl .
8. {

M v

o
.-

Y o R ST
i s
e { " '4*._\. o M{

o
=
4

-~

OpenWater [l Intertidal Marsh [l High Marsh
USGS 30

BL
IPCC



Blackwater National Wildlife Refuge Area

IPCC projection, average case scenario, 5 mm rise /year
2040
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Blackwater National Wildlife Refuge Area

IPCC projection, average case scenario, 5 mm rise /year
2050
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Blackwater National Wildlife Refuge Area

IPCC projection, average case scenario, 6.2 mm rise /year
2100
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Blackwater National Wildlife Refuge Area

Baseline: 3 mm rise/year
2100
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Estimates of Sea Level Rise are Rising
Range of Estimates by 2100
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After: pewclimate.org; Science Brief 2, June 2009
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conservation
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3 Scenarios for Future Emissions

1,000
900
800
700
600
500
400
300
200
100

0
2000

Business as Usual (UCS High)

Stabilization at Higher Level
(UCS Low)

Stabilization + Restoration
(Hansen: Coal Phaseout with CCS)




The Core Problem

According to James Hansen,
Chief Climate Scientist, NASA Goddard Institute for Space Studies

“If humanity wishes to preserve a planet similar
to that on which civilization developed and to
which life on Earth is adapted, paleoclimate
evidence and ongoing climate change suggest
that CO2 will need to be reduced from its
current 385 ppm to at most 350 ppm.”

38



Fossil Fuel + Net Land Use Emissions
The “Geophysical Boundary Condition™

1000
Emissions to Date

B Estimated Reserves

750

Gigatons Carbon
0]
=

Coal Land Use

James Hansen et al; April, 2008 39



And the Conservation Solution ...
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And the Conservation Solution ...

“An initial 350 ppm CO2 target may be
achievable by phasing out coal use except
where COZ2 is captured and adopting
agricultural and forestry practices that
sequester carbon.

“If the present overshoot of this target CO2 is
not brief, there is a possibility of seeding
Irreversible catastrophic effects.”

James Hansen et al; Target Atmospheric Co2: Where Should Humanity Aim?

April, 2008
40



Atmospheric CO; (ppm)

CO; with Coal Phaseout by 2030

450
Projected with Coal Phaseout (IPCC)
== (bservations

400 Wi ith Coal
Phaseout

350 With Forestry
& Soil
Sequestration

300

1900 1950 2000 2050 2100 2150

After: James Hansen et al; Target Atmospheric Co2: Where Should Humanity Aim? April, 2008 4]
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US Climate Change Science Pro
Products 4.3 & 4.4, June 2008

|

U.S. Climate Change Science Program
d the Subcommiittee on Global Change Research

Final Report, Synthesis and Assessment Product 4.4

s g K |
CONVENING LEAD AUTHORS: ﬁg« - o &
Peter Backlund, Anthony Janetos, and David Schimel 2 - i | June 2008
MANAGING EDITOR:
Margaret Walsh




Wildlife Responses: (observed)

866 peer reviewed articles

species studied

over 20 and 140 year
timeframes

Source: CCSP, The Effects of Climate Change on Agriculture...
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Wildlife Responses: Distributions

(observed)

The northern ranges of many species are
temperature-limited

Vast majority of species studied are already
shifting ranges generally to the north, and

very few to the south

Models predict this effect will continue as
warming increases

C.E.Burns et al 45



Wildlife Responses: Distributions
(predicted)
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Wildlife Responses: Distributions
(predicted)
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Predicting Future Mammal Responses

Glacier
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C. E.Burns et al
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Acadia Big Bend Glacier Smokies  Shenandoah Yellowstone Yosemite Zion

C. E.Burns et al
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Total Mammal Species (Predicted)

B Current B Gained
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Key Points

C. E.Burns et al
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Key Points

MFETY , including some
iconic species (e.g. lynx, moose in northern New England)

But they

Species ,as will
interactions between species (new predator/prey,
competitive, host/parasite interactions)

Successful management requires
to climate change and
to do so

C.E.Burns et al 50



After the Last lce Age

Ecosystems Disassembled + Reassembled into New Systems

Source: G.M. Hewitt and Nichols, R.A.2005



A Common View

“It’s not that ecosystems will shift in
ways that we haven’t seen in our past
history. It’s at which we are
forcing the shifts to occur...

“Many species will not be able to adapt
this rapidly”

52



End of the Last lce Age

A g e

“Younger Dryas”

ECM current (uA)

= D ystier
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Date (I,000s of Years before Present)

after Broeker, The Glacial World According to Wally, 2002; after Taylor et al; Greenland Ice Core Data (GISP)
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End of the Last lce Age
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S 30 Years! >

after Broeker, The Glacial World According to Wally, 2002; after Taylor et al; Greenland Ice Core Data (GISP) 55



End of the Last lce Age

| 1,680 | 1,660 | 1,640 | 1,620 Years before Present
S 30 Years! >

for nature to adapt

after Broeker, The Glacial World According to Wally, 2002; after Taylor et al; Greenland Ice Core Data (GISP) 56









but...what to do!?

|. Adaptation
2. Engaging others
3. Managing carbon

59



Adaptation

N

. Strategic land protection
. Land stewardship/management

Engaging others

Community engagement
Outreach + education

. Advocacy + policy

Managing carbon
(mitigation)

o o~ W

N

Reduce organizational carbon
footprint

. Reforestation & Afforestation
. Carbon trading

60



2.
Adaptat|on

ral principles and examples
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3 Scenarios for Future Emissions

1,000
900
800
700
600
500
400
300
200
100

0
2000

Business as Usual (UCS High)

Stabilization at Higher Level
(UCS Low)

Stabilization + Restoration
(Hansen: Coal Phaseout with CCS)
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3 Scenarios for Future Emissions

1,000
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Adaptation

Glick et al, National Wildlife Federation, 2009



“Initiatives + measures designed to

against actual
or expected climate change effects”

Glick et al, National Wildlife Federation, 2009
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1.

Reduce other
non-climate stressors

Glick et al, National Wildlife Federation, 2009
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2.

Manage for ecological function +
protection of biodiversity

Glick et al, National Wildlife Federation, 2009
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3.

Establish habitat buffer
zones + wildlife corridors

Glick et al, National Wildlife Federation, 2009
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4.

Implement proactive management +
restoration approaches

Glick et al, National Wildlife Federation, 2009
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J.

Increase monitoring + facilitate management
under conditions of uncertainty

Glick et al, National Wildlife Federation, 2009
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J.

Increase monitoring + facilitate management
under conditions of uncertainty

Glick et al, National Wildlife Federation, 2009
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4 Key Principles

(frequently used climate adaptation terminology)




resilience + resistance
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resilience + resistance
representation
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resilience + resistance
representation
refugia + corridors
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resilience + resistance
representation

refugia + corridors
adaptive learning

69



Reduce
non-climate
stressors

Manage for
ecological
function +
protect
biodiversity

Establish
habitat buffer
Zones +
corridors

Implement
proactive
management
+ restoration
approaches

Increase
monitoring +
facilitate
management
under
conditions of
uncertainty

Resilience +
Resistance

X

X

X

X

Representation

X

X

X

Refugia +
Corridors

Adaptive learning

/70




Resilience + Resistance

“Ability of a system to
or bounce back

I

from

National Wildlife Federation
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Build Resilience!
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Build Resilience!

1. Represent & protect environmental settings

2. Protect ecosystems of sufficient size

3. Maximize connectivity

4. Manage for ecological processes & functions

5. Limit non-climate stresses

72
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Build Resilience!

. Represent & protect environmental settings

. Protect ecosystems of sufficient size

. Maximize connectivity

. Manage for ecological processes & functions
. Limit non-climate stresses

. Maintain species richness

72



Resilience + Resistance
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Resilience + Resistance

N/

Riparian Buffers

/3



Resilience + Resistance

—

Enhanced
Riparian Buffers

/3



Resilience + Resistance
|dentifying and Protecting VWetlands

The Nature Conservancy



Resilience + Resistance
Satellite Image Analysis to Verify Areas of Active Flooding

April 14,2001 Sept. 5,200

The Nature Conservancy




Resilience + Resistance
Satellite Image Analysis to Verify Areas of Active Flooding

April 14,2001 Sept. 5,200

The Nature Conservancy




Invasives control
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Representatio
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. -~ Eastern Conservation Region
DRAFT OF 2/05
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The Nature Conservancy
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Species Richness

No. of Bedrock Types, No. of Elevation Zones, Maximum Hardiness Zone,
Longitude (increasing), Amount of Calcareous Substrate
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Predicted Species Richness

Based on the best-fit, a stepwise regression of 42 variables

Anderson, 2008 in prep.



Species Richness

No. of Bedrock Types, No. of Elevation Zones, Maximum Hardiness Zone,
Longitude (increasing), Amount of Calcareous Substrate

%]
(V9]
Q
c
=
e
a e
%)
QL
O
D
Q.
W
S
~
Y
O
<<

3000 4000 5000 6000

Predicted Species Richness

Based on the best-fit, a stepwise regression of 42 variables

Anderson, 2008 in prep.



Species Richness

No. of Bedrock Types, No. of Elevation Zones, Maximum Hardiness Zone,
Longitude (increasing), Amount of Calcareous Substrate
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Protect arenas for evolution, NOT museums of the past.
Focus on the stage and the play, not the individual actors.

Summits Steep Slopes/Cliffs

Photos Courtesy Dr. Mark Anderson, TNC 79



“While at any one place the species
composition will change, the geophysical
features endure and their significance to
biodiversity will remain.”

Dr. Mark Anderson, The Nature Conservancy
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A Shift in Paradigms

OLD

NEW

Cattail (Typha latifolia) —
Marsh Marigold (Caltha

Freshwater marsh

farget | palustris) herbaceous ecosystem on
vegetation
Cattail (Typha angustifolia,  F..chwater marsh
latifolia) — Bullrush

Target 2 ecosystem on

(Shoenoplectus spp.)
herbaceous vegetation

Anderson 8/2007
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A Shift in Paradigms

OLD

NEW

Cattail (Typha latifolia) —
Marsh Marigold (Caltha

Freshwater marsh

Target | valustris) herbaceous ecosystem on shale
vegetation at low elevation.
Cattail (Typha angustifolia, |Frashwater marsh
latifolia) — Bullrush .

Target 2 ecosystem on granite

(Shoenoplectus spp.)
herbaceous vegetation

at high elevation

Anderson 8/2007
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Representation

. Represent vital settings + physical gradients

. Protect ecosystems of sufficient size and
quality

. Distribute risk across geographically-
dispersed replicates

. Maintain natural processes + prevent
isolation of targets

. Implement strategies that protect the whole
portfolio

83



Representation
In the Schuylkill Watershed
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Physiographic Representation
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Refugia + Corridors
Microclimates in afRE8tofed Canyon in CA




Refugia + Corridors

Microclimates in 2

REStofed Canyon in CA
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Refugia + Corridors
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Refugia + Corridors
Microclimates in a Restored Canyon in CA

«North

Cool North

Warm South

4' LN

wn

O AN

o ﬁ-«ﬁ-’,

7 P\ -

0.0 »‘Qsaa-" -

c \ — lvnd vAY
.u A AR/ _ O

S AN e .|_u
L \E_"A O

&
| )

% vors | IR

[/

O ,‘aab'i m
> Nl | NS
I AV 4

g “ ‘?-s'

C YUY TS
.= ‘ Waorsam

@)

(4]

L

87



Refugia + Corridors

Coastal Cutthroat Trout
(Oncorhychus clarkii clarkii

F 2R I




Refugia + Corridors
Dolly Varden (Char)

(Salvelinus malma Walbaum)

John Bavaro



Refugia + Corridors
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Refugia + Corridors
Continental Connectivity Corridors
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Refugia + Corridors
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Refugia + Corridors
Anticipatory Land Protection Strategies

Kennebec Estuary Project

TheNature

Conservancy ‘

93



Seed Banking + Facilitated Migration
New England Wildflower Society

Responsive Manhagement:
1. Seed banking

2. Invasive species control
3. Facilitate migration
4

. Replanting invaded
habitats




Seed Banking + Restoration

To keep every cog and wheel is the first

precaution of intelligent tinkering.
Aldo Leopold

www.kew.org/msbp/index.htm

95


http://en.wikipedia.org/wiki/Image:Bixa_orellana_seeds.jpg
http://en.wikipedia.org/wiki/Image:Bixa_orellana_seeds.jpg
http://www.globalchange.gov/usimpacts
http://www.globalchange.gov/usimpacts

How do we make
decisions under
conditions of

uncertainty!?



Adaptive Learning

|. Select

‘4 Targets \‘

6 Reflow 2.ASgess CC
+ Revise Impagts +
Vulnerability
A 4
5. Implement 3. Evaluate
Manag@&ment + Management
MonitoringiStrategy tions

'~ 4. Develop A

Response
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3.
Engaging Others

outreach, education and policy




Community Engagement
Rising Waters Project on Hudson River
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Hudson River Estuary

Slide Courtesy of David vanLuven, TNC, Eastern NY Chapter

Community Engagement
Rising Waters Project on Hudson River
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Community Engagement
Benefits of Rising Waters Project

% . ~""_.‘-.“j§; .
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3k Diversifies concern about climate change

3k Broad coalitions = more political clout
3k Broad coalitions can access more government funds

2k More political clout + more funds = implementation

TheNature .
Conservancy




Emerging Federal

Adaptation Policy
(based on HR %454: ACES bill




ACES: Key Elements of Natural Resource
Adaptation Spending

Establish Interagency Panel (Year I)

Develop Strategy based on Vulnerability
Assessments (Year )

Agency Plans Approved by President  (Year 2)
State Plans Approved by Agencies (Year 2)

Use of deposits into Adaptation Fund: a
separate account, mandatory funding for
adaptation purposes only

106



ACES: Increase in Natural Resource Adaptation
Allowances Over Time
Using EPA Estimates of Allowance Prices

B Federal Agencies
. State Agencies
LWCF and Forest Legacy
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4.
Vianaging

Carbon




A Louisiana Example: Tensas River Basin
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J. J. Audubon

Source: Carbonfund.org 108



A Louisiana Example: Tensas River Basin
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A Louisiana Example: Tensas River Basin

Quantity
Acres conveyed to USFWS 8,225
Acres reforested 6,022
Trees Planted 1,818,644
Donated planting costs™ $1,645,000
Land acquisition support™ $3,066,360
TRUST
Tons of CO; sequestered 2,709,900 L

[LAND

* Funders include L&WCEF, Volkswagen, Entergy

Source: TPL, June, 2008 110



A Louisiana Example: Tensas River Basin

Cost per

Acre (%)
Planting Costs 250
USFWS Management Fee 50
TPL Land Costs 500
Total 800

Source: TPL, June, 2008




1. Strategic land protection

Adaptation

N

. Land stewardship/management

Community engagement
Outreach + education

Engaging others

. Advocacy + policy

o o~ W

Reduce organizational carbon

Managing carbon  footprint
(mitigation) . Reforestation & Afforestation

N

8. Carbon trading

112



Adaptation

. Understand the vulnerabilities and

opportunities in your region, and
develop a plan to respond.

Engaging others

. Educate your US Senators; monitor

state and local policies.

. Engage with your community around

the vulnerabilities and opportunities
identified above.

Managing carbon
(mitigation)

. Calculate your organizational carbon

footprint; develop a plan to reduce it.

. Plant trees, lots of trees
. Monitor the carbon trading scene.

113
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